本文来自作者[admin]投稿,不代表东辰文化立场,如若转载,请注明出处:http://www.mzwhys.cn/jyan/202506-3491.html
FVB/NRJ WAP-CRE; CDH1F/F ,TRP53F/F,TRP53F/F; ROSA26-CAS9和ROSA26-MT/MG小鼠菌株在NKI动物设施中维持,并在PCR基因上进行了型号 ,并如前所述,如前所述,如前所述。为了生成带有FGFR2-IRES-LUC等位基因的GEMM ,使用补充表7中列出的引物序列从cDNA克隆(MC221076,ORIGENE)中分离出小鼠FGFR2(NM_201601.2),从用FSEI-PMEI片段插入frt-Invcag-ires-luc载体(Shuttle Vector) 。这导致了Frt-Invcag-FGFR2FL-IRES-LUC和FRT-INVCAG-FGFR2ΔE18-IRES-LUC等位基因。FLP介导的穿梭载体在WAP-CRE; CDH1F/F; COL1A1FRT/+ GEMM衍生的胚胎干细胞(ESC)克隆(FVB/NRJ背景)和随后对修饰的ESC的胚泡注射的整合。将嵌合动物与FVB/NRJ背景上的CDH1F/+和CDH1F/F小鼠交配 ,以生成实验组 。使用标准PCR,使用补充表8中列出的引物序列,使用标准PCR检测到Col1a1frt-Invcag-fgfr2-ires-luc/+和WT等位基因,其退火温度为58°C。col1a1frt-Invcag-fgfr2-Δe18-ires-luc ,420 bp;和wt,234 bp。在这里,Col1a1frt-Invcag-FGFR2-FL-IRES-LUC和COL1A1FRT-INVCAG-FGFR2-ΔE18-IRES-LUC分别称为FGFR2FL2FL-IRES-LUC和FGFR2ΔE18-IRES-LUC 。每周监测GEMM队列 ,并在检测到第一个可触及的肿瘤时对无乳腺肿瘤生存(事件)进行评分(事件),而未发展任何乳腺肿瘤的小鼠进行了审查。使用Calliber在二维中测量肿瘤体积如下:体积=长度×width2×0.5。
To somatically model Fgfr2 variants in the mouse mammary gland, 6-week-old FVB/NRj WT, Wap-cre;Cdh1F/F, Trp53F/F, Trp53F/F;Rosa26-Cas9 or Rosa26-mT/mG female mice were intraductally injected as previously described12 with lentiviruses encoding Fgfr2 variants in combination withCRE,MYC ,CCND1,FGF3和/或先前验证的针对PTEN(SGPTEN)E7的SGRNA 12,13 。简而言之,使用34G针头将20μl的高映射病毒注入第四和/或第三个乳腺。使用每毫升2×108至2×109的转染单元(TU)的慢病毒滴度。每周两次监测体细胞模型队列 ,并在检测到可触及的肿瘤时分别对每个注射的乳腺进行无乳腺生存(事件),而对未产生任何肿瘤的乳腺进行了检查。使用Calliber在二维中测量肿瘤体积如下:体积=长度×width2×0.5 。
对于同种异体移植肿瘤,将DMSO保存的1 mm3肿瘤片段原始触发地移植到8周大的Syngeneic FVB/NRJ雌性小鼠(Janvier Labs)的右乳腺脂肪垫中 ,如前所述。每周两次称重并监测小鼠的乳腺肿瘤发育,并在肿瘤达到62.5 mm3的体积(5×5 mm)(5×5 mm)时,使用Callipers使用Callibers二维测量;体积=长度×WIDTH2×0.5),将小鼠随机分配给车辆与AZD4547 FGFRI治疗臂。根据先前优化的间歇性给药方案 ,每天通过使用媒介物(1%Tween-80在非矿化水中)或每公斤AZD4547(Astrazeneca)每天通过口服烤架进行处理 。最后给药后1小时,将小鼠安乐死。
For all mouse models, mammary-tumour-specific survival was scored when a single mammary tumour burden reached a volume of 1,500 mm3, the total mammary tumour burden reached a volume of 2,000 mm3 or the mice suffered from clinical signs of distress, such as respiratory distress, ascites, distended abdomen, rapid weight loss and severe anaemia, caused by primary tumour burden or metastatic disease.因其他情况而被安乐死的小鼠进行了审查。在任何实验中,最大允许的疾病终点均未超过 。收集乳腺并分析组织学异常。使用G*Power软件(v.3.1)56确定样本量 ,并且足够大以测量效应尺寸。肿瘤测量和验尸后分析以盲方式进行 。小鼠菌落在温度和湿度控制的房间中,在12 h – 12 h的光线周期下,将小鼠菌落固定在经过认证的动物设施中 ,相对湿度为21°C和55%的相对湿度。将小鼠保存在单独的通风笼中,并随意提供食物和水。所有动物实验均由荷兰癌症研究所动物伦理委员会批准,并根据机构 ,国家和欧洲的动物护理和使用指南进行了批准 。
如先前描述的57,通过腹膜内注射150毫克甲壳虫卢塞特蛋白(E1601,Promega) ,对荧光素酶表达的体内生物发光成像进行了。使用Live Image软件(v.4.5.2,PerkinElmer)和大小固定的正方形操作的体内成像系统(124262,Perkinelmer)在体内成像系统(124262,Perkinelmer)中使用IVIS光谱在小鼠(不包括头部和尾部)上测量信号强度。信号强度定量为通量(每秒每秒每秒的光子)。
将组织固定并用石蜡固定(FFPE)进行切片和加工 ,以使用常规程序进行血久氧化物和曙红(H&E)组织化学和免疫组织化学(IHC)染色(IHC) 。对于IHC染色,在pH 6(FGF3,FGFR2 ,PTEN)或pH 9(MyC,Cyclin d1,e-Cadherin ,p53)时,在pH 6(FGF3,FGFR2 ,PTEN)或TRIS-EDTA上用柠檬酸盐缓冲液(CBB999,SCYTEK)进行抗原检索。将切片与原代抗体(补充表9)在4°C孵育过夜。用Envision+ HRP标记的聚合物抗兔子系统(K4003,DAKO)标记原代抗体 ,用液体DAB+底物成色素系统(K3468,Dako)可视化,并用肝素对可视化 。通过评估IHC的认证病理学家对所使用的抗体进行了独立验证,从而导致阳性和负生物对照FFPE组织 ,以确保特异性和敏感性。此外,通过在额外选择的样品子集中省略原代抗体来进行负技术对照。根据乳腺病理学的国际共识58,使用H&E和E-钙粘蛋白载玻片对乳腺肿瘤病变类型进行分类 。IHC stains were quantitatively analysed by evaluating tumour cell-specific positivity using a histo-scoring system (0, negative; 1, weakly positive; 2, moderately positive; 3, strongly positive) or by calculating a histo (H)-score for each tumour defined as follows: H-score = 1 × (the percentage of tumour cells with weak staining intensity) + 2 × (the percentage of tumour cells with中等染色强度)+3×(具有强染色强度的肿瘤细胞百分比) ,得分在0到300之间。所有载玻片均以盲型病理学家(S.K.)的方式审查和量化。使用Pannoramic 1000全斜线扫描仪(3Dhistech)对载玻片进行数字处理,并使用CaseViewer软件(v.2.2.1,3dhistech)捕获 。
如前所述53 ,从10周龄的WT,FGFR2FL-IRES-LUC和FGFR2ΔE18-IRES-LUC雌性小鼠中分离出原发性小鼠乳腺上皮细胞(MMEC)。In brief, mammary glands were minced and digested with 4 mg ml−1 collagenase A (11088793001, Roche) and 25 μg ml−1 DNase I (DN25, Sigma-Aldrich) in Dulbecco’s modified Eagle medium/nutrient mixture F-12 (DMEM/F-12, 31331, Thermo Fisher Scientific) containing100 IU ML -1青霉素 - 链霉素(15070,Thermo Fisher Scientific)在37°C下持续1小时。Digests were passed through a 70 μm cell strainer that was prewetted with PBS containing 10% fetal bovine serum (FBS, S-FBS-EU-015, Serana) and 2 mM EDTA, and cells were cultured in DMEM/F-12 supplemented with 10% FBS, 100 IU ml−1 penicillin–streptomycin, 5 ng ml−1 epidermal growth factor(EGF ,E4127,Sigma-Aldrich),5 ng ML-1胰岛素(I0516 ,Sigma-Aldrich)和10μMY-27632(M1817,Abmole) 。通过差异化胰蛋白酶化从MMEC培养物中去除污染的成纤维细胞。用腺病毒AD5CMVCRE颗粒(ADCRE,1×109 ML-1;爱荷华大学病毒载体核心)转导汇合孔在8μgml-1多甲氧烯(H9268,Sigma-Aldrich)的情况下进行48 h ,在排列到后期的分析前48小时。使用1 mg ML-1甲虫荧光素和生物发光成像,使用Tecan I-Control软件(v.3.9.1,Tecan ,Tecan)运行的Infinite M Plex Plate读取器(TECAN)确认FGFR2-IRES-LUC等位基因的切换和生物发光成像。
如MMEC分离所述,对注射FGFR2-P2A-CRE慢病毒注射的Rosa26-MT/mg雌性小鼠的乳腺进行了处理 。用荧光激活的细胞分选(FACS)验证的BV650偶联的抗EPM抗体(1:100,740559 ,BD Biosciences)在FACS缓冲液中(PBS)中的PBS(具有10%FBS和2 mm EDTA)的PBS,带有活机/死亡的305 kit(405)。Thermo Fisher Scientific),用BD Phosflow修复缓冲液I(557870 ,BD Biosciences)固定,并用BD phosflow Pers Perm缓冲液III(558050,BD Biosciences)通透 ,在4°C下持续30分钟。将细胞与原代抗体(抗FGFR2、1:200 、11835,细胞信号技术;抗GFP,1:200,AB6673 ,ABCAM)一起孵育过夜,然后在4°C下在FACS缓冲液中孵育1小时 。使用过表达GFP或FGFR2的NMUMG细胞与这些蛋白质阴性的对照细胞的NMUMG细胞对FACS进行了抗FGFR2和抗GFP抗体的验证。补充表9提供了使用的抗体的详细信息。使用BD FACSDIVA软件(v.8.0.2,BD Biosciences)和405 nm(450/50/30/30 Pass filters) ,488 nm(488 nm)(530/488 nm),使用BD LSRFTRESSA分析仪(BD Biosciences)进行了FACS 。(670/30通过过滤器)激光器分别测量405 live/dead,bv650 – EPCAM ,EGFP – AF488和FGFR2 – AF647。使用FlowJo(V.10.7.1,BD Biosciences)分析数据。
The SIN.LV.SF, SIN.LV.SF-T2A-Puro, SIN.LV.SF-GFP-T2A-Puro lentiviral vectors and the SIN.LV.SF-Cre (Lenti-Cre), SIN.LV.SF-P2A-Cre and pGIN sgPten–P2A-Cre lentivectors all encoding improved cre with mammalian codon usage (derived fromPBOB-CAG-ICRE-SD,12336 ,ADDGENE)和最后针对PTEN(SGPTEN)靶向E7的经过验证的SGRNA(先前均已描述为10,12,13,59) 。鼠标FGFR2(NM_201601.2)和MYC(NM_010849.4)从cDNA克隆(FGFR2,MC221076,Origene; Myc ,8861953,source Bioscience)中隔离,使用Q5高效DNA聚合酶(M0491S,New Girangs) ,以及New England byny byne byne new gengland byne byne new new gengland byny byne biosie; myc,source Bioscience)隔离放大FGFR2FL或FGFR2ΔE18,或Bamhi -agei悬垂 ,放大myc。将扩增子插入sin.lv.sf,sin.lv.sf-t2a-puro和sin.lv.sf.sf-p2a-cre vectors,导致sin.lv.sf-fgfr2fl ,sin.lv.sf.sf-fgfgfr2ΔE18sin.lv.sf-fgfr2Δe18-t2a-puro,sin.lv.sf-fgfr2fl2fl-p2a-cre,sin.lv.sf.sf-fgfr2Δe18-p2a-cre和sin.lv.lv.sf-myc。Custom-synthesized gBlocks gene fragments of mouse Ccnd1 (NM_001379248.1), Fgf3 (NM_008007.2), Ate1-E11–E12 (NM_001271343.1), Bicc1-E3–E21 (NM_001347189.1) and Tacc2-E15–E21(NM_206856.4) ,它是人类FGFR2融合伙伴基因的同源物(图2H),以及人类的全长FGFR2E18-C1(NM_000141.4),FGFR2E18-C2(XM_017015921.2) ,FGFR2E118-C3,FGFR2E118-C318-C3 E118-C3)FGFR2E18-C4(NM_001144915.2),IGR1序列(在TCGA-A8-A08A中鉴定;扩展数据图4F)和Frameshift突变产生的E18序列(扩展数据图2K)被购买(集成DNA技术) 。根据制造商的建议,使用主链和插入物的PCR扩增(S)和融合内HD克隆套件(638911 ,Takara Bio)在各自的慢病毒中组装了Gblocks基因片段或其部分。FGFR2中的点突变,简短的缺失/插入以产生渐进的FGFR2 E18截断和引入IGR2序列 (在TCGA-BH-A203中鉴定;扩展数据图4G)到FGFR2是使用Quikchange Lightning位置定向的诱变试剂盒(210519,Agilent)进行的。分别使用Snapgene(v.5.2)和Quikchange Primer Design60设计融合和定向的诱变引物。使用Sanger测序验证了所有lentivectors 。如前所述61 ,通过在HEK293T细胞中四个质粒的瞬时共染料产生浓缩的慢病毒库存。使用QPCR慢病毒滴度试剂盒(LV900,应用生物材料)确定病毒滴度。
HEK293T细胞(CRL-3216,ATCC)在ISCOVE修改的Dulbecco的培养基(31980 ,Thermo Fisher Scientific)中培养,其中含有10%FBS和100 IU ML-1 Penicillin-1 Penicillin-streptomycin 。MCF7(HTB-22),MDA-MB-134-VI(HTB-23) ,MDA-MB-231(HTB-26),NCI-H716(CCL-251),NMUMG(CRL-1636) ,KATO-III(HTB-103),SNU-1(HTB-103),SNU-1(CRL-5971)(CRL-5971)(CRL-5971)(CRL-5971)ATCC)以及MFM-223(98050130,ECACC)和SUM52PE(人类-0003018 ,Bioivt)细胞在含有10%FBS和100 IU ML-1 ML-1青霉素 - 链霉素的DMEM/F-12中培养。所有细胞系先前均由提供商进行身份验证。本研究没有进行重新认证 。为了稳定表达慢病毒GFP-T2A-PURO或FGFR2-T2A-PURO构建体,在8μgml-1聚乙烯的存在下,用慢病毒上清液以相等的tu来转导Nmumg和Kato-III细胞24 h。选择转导的细胞用2μgmL-1紫霉素(A11138 ,Thermo Fisher Scientific)5天,然后在含有10%FBS的DMEM/F-12中生长,100 iu ml-1 Penicillin-stroptycin-stroptspycin ,1μgMl-1呼吸霉素和10μgml-1呼吸霉素和10μMY-Y-27M Y-27M-Y-276632。使用RT -QPCR验证了慢病毒构建体的过表达(补充表4) 。所有细胞系均在37°C的标准孵化器中培养5%CO2,并使用mycoalert支原体检测试剂盒(LT07-218,LONZA)常规测试了支原体污染。
用消音器选择负阴性对照1或2 siRNA(SICO#1和#2 ,4390844,4390847,Thermo Fisher Scientific)或消音器精选的siRNA ,由族谱主义定制sirna Buolder(Thermo Fisher Scientific)靶向共享Exons(E5,E9,E15)中的人类细胞,将人类细胞转染。(SIFGFR2E5/E9/E15) ,全长FGFR2(SIFGFR2E18-C1)的E18-C1的3'-UTR,截短FGFR2E18-C3的E18-C3的3'-UTRSIFGFR2E5靶向内源性FGFR2转录本以及来自慢病毒构建体的FGFR2转录本 。所有其他siRNA专门针对内源性FGFR2转录本,因为慢试子中使用的FGFR2 cDNA序列缺乏3'-UTR ,并且在E9和E15中包含静音突变,以防止SIFGFR2E9/E15的结合。在补充表10中提供了自定义设计的siRNA序列的列表。siRNA(50 nm)与以前描述的62结合使用JETPRIME转染试剂(114-15,Polyplus Trestfection)。
A total of 800 NMuMG or SNU-1 cells; 2,000 MCF7, MDA-MB-231, KATO-III, SNU-16, or SUM52PE cells; 3,000 MFM-223 or NCI-H716 cells; or 4,000 MDA-MB-134-VI cells per well were seeded in 96-well plates using DMEM/F-12 supplemented with penicillin–streptomycin and 10% FBS for human cell lines or 3% FBS for NMuMG. After 24 h, cells were treated with FGFRi for 4 days using vehicle (DMSO), AZD4547 (AstraZeneca), or pemigatinib (HY-109099), BGJ398 (HY-13311) or debio-1347 (HY-19957, all MedChemExpress) with a range of 0.1 nM to 100 μM. Usage of AZD4547, pemigatinib, BGJ398 and debio-1347 was previously described63,64,65,66. Cell viability was assayed using CellTiter-Blue Reagent (G808A, Promega) for 4 h and subsequently measuring fluorescence on the Infinite M Plex plate reader operated using the Tecan i-control software. Drug-response curves were modelled using [inhibitor] versus response with variable slope (four parameters) and least-squares regression in Prism (v.9.3.1, GraphPad Software).
每孔总共将5,000个Kato-III或MCF7细胞接种在六孔板中 ,并在24小时后用媒介物,100 nm AZD4547或100 nm pemigatinib处理,或用50 nm sirNAS转染并培养7天 。对于Kato-III细胞 ,如前所述53,使用RAC-11P细胞将六孔板用层粘连蛋白在层粘连蛋白上进行。如前所述53,用晶体紫色染色细胞 ,并使用Gelcount菌落计数器(Oxford Optronix)对板进行成像。
共有800个SNU-1细胞;1,500 MCF7,MFM-223,Kato-III,SNU-16或SUM52PE细胞;或将每孔的3,000个NCI-H716细胞接种在96孔板中 ,并在24小时后用媒介物或100 nm AZD4547,pemigatinib,bgj398或Debio-1347处理 ,或用50 nm sirnas转染 。使用CellTiter-Blue试剂在姊妹板上测定细胞密度4小时,并使用Tecan I-Control软件进行操作的无限M PLEX读板读取器。
通过在DMEM/F-12中稀释3%琼脂糖溶液(In PBS),用2 ml或1 ml的六个或十二孔板用2 ml或1 ml的0.6%低纤维温度琼脂糖(A9414 ,Sigma-Aldrich)预涂。底层在4°C下凝固30分钟 。Nmumg细胞分别通过70μM细胞滤网和20,000或10,000个单细胞分别通过六或十二孔板的每孔,在2 ml或1 ml的0.35%低纤维温度琼脂糖中悬浮在DMEM/F-12中,并补充了3%的FBS ,cNICICILLIN-StICILLIN-StREPTHIPS菌菌素和车辆,100NMAS,100NMA ,在DMEM/F-12中悬浮。pemigatinib,并在顶部镀上。在将板转移到孵化器之前,将顶层在4°C下凝固30分钟 。使用Gelcount菌落计数器对板进行成像,并使用集成的Gelcount菌落计数平台(V.1.1.2 ,Oxford Optronix)对独立于锚定的生长进行了量化。
用2 mM EDTA收集培养的Nmumg细胞,并通过用FACS缓冲液填充的70μM细胞滤网。将单细胞用活/死固定的紫罗兰死细胞染色套件标记,并固定 ,透化,与原代和二抗孵育,并按照所述进行分析 ,以进行乳腺的FACS分析 。
如前所述10,68,分离了冷冻乳腺肿瘤的RNA。将培养的细胞裂解(siRNA转染后72小时,如果在人体细胞系中)在含有1%2-甲醇的缓冲液(Bio-52079 ,Bioline,Bioline)中裂解。根据制造商的指南,使用分离株II RNA迷你试剂盒(Bio-52072 ,Bioline)进行样品的总RNA提取和DNase处理。使用DS-11串联分光光度计/荧光计(Denovix)对纯化的RNA进行定量,并使用四谷cDNA合成试剂盒(Bio-65042,Bioline)与寡素(DT)18底漆(肿瘤碎片)(肿瘤零件)或随机六聚体启动(细胞)进行逆转录酶反应 。使用QuantStudio实时PCR软件(v.1.7.7.2,Thermo Fisher Scientific)操作 ,使用QUPCR使用Sybr Sybr Hi-Rox试剂盒(BIO-92005,Bio-92005,Bioline)和QuantStudio 6 Flex实时PCR系统(4485691 ,Thermo Fisher Scientific)进行。使用引物-blast69设计了使用的引物,并在补充表11中提供了列表。使用小鼠HPRT(肿瘤碎片)或USF1(细胞)或人USF1作为管家转录本将相对量化的cDNA归一化 。
在DMEM/F-12饥饿培养基(0%FBS)中培养Nmumg细胞48小时,并用媒介物或100 nm AZD4547处理3小时。在先前描述的RIPA Buffer53中裂解细胞 ,其中含有停止蛋白酶和磷酸酶抑制剂鸡尾酒(78440,Thermo Fisher Scientific)。使用BCA蛋白质测定试剂盒(23227,Thermo Fisher Scientific)确定蛋白质浓度 ,并使用使用TECAN I-Control软件操作的Infinite M Plex读板读取器测量吸光度 。在Nupage 4–12%BIS-Tris Mini蛋白凝胶(NP0323,NP0329,Thermo Fisher Scientific)上分离出相等量的蛋白质和蓝眼睛的蛋白质标志物(PS-104 ,Jena Bioscience),并在4°C上转移到硝基纤维素元素(888001),并转移到硝基纤维素中(88801),Buffer53。用Ponceau S溶液(AB270042 ,ABCAM)染色,并使用融合FX(Vilber)成像,在5%牛血清白蛋白(BSA ,A8022,Sigma-Aldrich)中被封闭,在PBS-T(0.05%Tween-20)中(0.05%TWEEN-20) ,并用4%的bsa undibnect undibnect undibnection bsa codbodies condibnection codibnection bsa codbodies。将膜用PBS-T洗涤,并在PBS-T中的5%BSA中与二抗在室温下孵育1小时 。补充表9中提供了使用的抗体清单(所有制造商验证的抗体)。在PBS-T中洗涤膜并使用SuperSignal West Pico Plus Chemilimeinimeinimeincect底物或FEMTO最大敏感性底物(34580,34580 ,34095,热渔业科学)。使用融合FX7边缘成像系统(V.18.05,Vilber)操作的融合FX对膜进行成像 ,并使用Photoshop 2022(v.23.2.2,Adobe)使用输入水平和输出级别处理,并在Fiji(V.1.1.1.1.0)70中测量灰度级别,并在fiji(V.1.1.0)中进行平均灰色值测量 。将蛋白质带强度标准化为β-肌动蛋白 ,并将磷酸蛋白带进一步标准化为相应的总蛋白质带和FGFR2强度。
在3 mL尿素液压缓冲71中收集了两个(全球磷酸蛋白质组学)或三个(磷酸化-TYR免疫沉淀(P-TYR IP)蛋白质组学)15厘米表达GFP或FGFR2变体的Nmumg细胞菜肴。在这项研究中收集的FGFR2肿瘤的新鲜液样样品以及K14-CR; BRCAF/F; TRP53F/F(KB1P)和KB1P; MDR1A/B - / - (KB1PM)肿瘤在其他WhateWhere72收集的72中收集的72肿瘤使用Milli-Q H2O安装,并使用米利 - Q H2O安装。将切片收集到尿素裂解缓冲液(40倍湿重)的最终湿重高达250 mg 。如前所述73,通过离心进行超声检查和清除裂解物。使用BCA蛋白测定试剂盒测定蛋白质浓度 ,并使用Western印迹和P-TYR-1000抗体(8954,细胞信号技术)验证蛋白质磷酸化完整性。为了创建一个用于蛋白质表达分析的光谱库,对于每种设置 ,进行了十频凝胶内消化实验,并如前所述处理SDS凝胶74 。每个细胞裂解物样品,加载45 µg总蛋白。此外 ,加入了小鼠肝裂解物的45 µg总蛋白71。在6个池中制备肿瘤裂解物,每个池由4-7个单独的样品组成,每个池加载60 µg总蛋白质 。对于全球磷酸化蛋白质组学和P-tyr IP实验 ,使用胰蛋白酶和用oasis hlb 1 cm3 acttridge(186000383,waters at waters and Waters and Waters and Waters and Waters and Waters and Waters and waters and waters and waters),使用胰蛋白酶和脱盐使用胰蛋白酶和脱盐的500 µg总蛋白(P-tyr IP; P-tyr IP肿瘤,4 mg)的分解蛋白消化。对于全球磷酸蛋白质组学实验 ,使用5 µL Fe(III)-NTA固定金属亲和力色谱(IMAC)墨盒(G5496-60085,Agilent Technologies)在AssayMap Bravo平台(Agilent Technologies)上进行磷酸肽富集(Agilent Technologies) 从0.1%三氟乙酸和80%乙腈中的200 µg脱盐肽开始。在25 µL 5%NH4OH/30%乙腈中洗脱磷酸肽 。如前所述71,使用二氧化钛珠对Kb1p(M)肿瘤富集进行。如前所述73 ,使用PTMSCAN P-TYR-1000试剂盒(8803,细胞信号技术)进行了含P-tyr的肽的IP。
对于FGFR2样品,使用配备有50 cm×75μmID的PEPMAP(C18 ,1.9μm)列的Ultimate 3000 Nanolc -Mass System(MS)/MS System(Thermo Fisher Scientific)分离磷酸肽 。注射后,将肽在10 mm×75μm的ID上以3μlmin -1的速度捕获在2%缓冲液B(80%乙腈,0.1%甲酸)下 ,在110 min的110分钟内,在35°C的10-40%梯度中,在300 nl min -1中以300 nl min -1分离。在Tune(v.2.11)和Xcalibur软件(V.4.3.73.11 ,Opton-30965,opton-30965)操作的Q精确HF质谱仪(Thermo Fisher Scientific)中,将洗脱肽的电离为电离。使用AGC目标值为3×106电荷,最大值为100毫秒 ,在Orbitrap系统中以M/z 350–1,400的分辨率为120,000(m/z 200)的完整质量。在更高能源碰撞电池中,将前15个肽信号(2+电荷2+)提交给MS/MS(1.4 AMU隔离宽度,26%的归一化碰撞能量) 。使用AGC目标值为1×106电荷 ,最大64毫秒和0.1%的低速度,以15,000的分辨率(在m/z 200)以15,000(m/z 200的分辨率)获取MS/MS光谱,并获得了0.1%的低填充比为0.1%二氧化硅柱定制包装 ,1.9μm120Åreprosil pur c18 aqua(Maisch博士)。注射后,将肽在10 mm×100μm(内径)陷阱柱上以6μlmin -1的速度捕获,该链柱在2%缓冲液B下以5μm120Å的reprosil pur C18 aqua在2%缓冲液B中分离 ,并在90分钟内的10-40%缓冲液B中以300 NL min -1分离。使用铅笔柱加热器(Phoenix S&T)在50°C保持LC柱 。在+2 kVa的电位中将洗脱肽的肽电离化为由Tune和Xcalibur软件操作的Q精确的HF质谱仪。完整的质量以70,000的分辨率(在m/z 200)测量 在Orbitrap系统中,使用3×106电荷的AGC目标值。在高能量碰撞电池中,将前10个肽信号(2+电荷2+)提交给MS/MS(1.6 AMU隔离宽度 ,25%归一化碰撞能量) 。使用AGC目标值1×106,最大值,80毫秒和0.1%的弱点,以1.3×104的强度为1.3×104。对于FGFR2和KB1P(M)的示例 ,将AGC的较高比例为1.3×104。30 s 。对于蛋白质表达实验,如FGFR2磷酸肽所述分离并洗脱肽(1 µg总肽,脱盐)。数据独立采集(DIA)-MS方法由120,000分辨率的MS1扫描从350至1,400 m/z组成(AGC目标为3×106和60 ms的注入时间)。对于MS2 ,以30,000的分辨率获取了24个可变大小的直径段(AGC目标3×106和自动注射时间) 。DIA-MS方法以350 m/z的速度开始,包括一个35 m/z的窗口,20个25 m/z的窗口 ,2个60 m/z的窗口和418 m/z的一个窗口,以1,400 m/z结尾。将归一化碰撞能设置为28。将光谱记录在质心模式下,MS2设置为3+的默认电荷状态 ,第一质量为200 m/z。光谱库数据文件是通过与磷光蛋白质组学实验相同的采集设置获取的 。
对于蛋白质表达实验,搜索了凝胶消化实验的数据依赖性采集(DDA)模式的MS/MS光谱,以使用Maxquant(V.2.0.3.0.3.0.3.0)的瑞士杂志Mus Musculus参考蛋白质组(25,374个条目 ,规范和同工型,2021_10释放2021_10)。在启用了匹配(MBR)选项之间的匹配的样品中,肽识别均传播。最大MSMS.TXT文件用于使用Spectronaut软件(V.15.4.210913,Biogognosys)生成光谱库 。首先使用Biognognosys工厂设置在Spectronaut(DirectDIA)中首先在DIA模式下单个样品测量结果得出的光谱 ,以创建第二个光谱库。为了最终搜索Spectronaut中的DIA数据,使用默认设置使用蛋白质LFQ方法设置为MAXLFQ,关闭插图选项和自动归一化策略 ,使用默认设置进行了两个库。使用SSGSEA模块(v.10.0.11)78和来自MSIGDB(v.7.0)79的单样样本基因集富集分析(SSGSEA)进一步处理Spectronaut报告(SSGSEA),并使用SSGSEA模块(V.10.0.11)78进行 。缺少值以零为零。对于磷酸化蛋白质实验,如先前所述的71使用瑞士 - 普罗特(FGFR2样品)或Uniprot(KB1P(M)样品)Mus Musculus参考蛋白质组织(Uniprot(Uniprot ,34,331,34,331,Canonical和Isoforms ,repartion and Isears,2015年6),对磷酸肽的鉴定和定量进行了定量。具有定位概率的磷脂 <0.75 (class 1)80 were discarded. The R package limma (v.3.52.1)81 was used to perform differential expression analysis on class 1 phosphosite intensity data. For two-group comparisons, phosphosite intensity data were filtered for high data presence in at least one of the groups under comparison (cells, ≥75%; tumours, ≥50%). In the case of data presence in one group and absence in the other (phosphosite on/off behaviour), only observations with a very high data presence in the ‘phosphosite on’ group were allowed (cells, 100%; tumours, ≥90%). In these cases, missing values were imputed in the ‘phosphosite off’ group with a zero. Fold change values were determined using the mean of each treatment group and the antilog value was calculated. If downstream analysis did not allow the presence of duplicated phosphosite amino acid windows, the entry with the lowest P value was used. Phosphosite signature enrichment analysis (PTM-SEA)82 was performed with the GenePattern platform77 using a seven-amino-acid sequence flanking the phosphosite as an identifier and the mouse kinase/pathway definitions of PTMsigDB (v.1.9.0)82 with the default settings. When PTM-SEA was performed following a two-group comparison, the rank metric was derived by multiplying the sign of FCs with the −log10-transformed P values calculated by limma. When PTM-SEA was performed on single samples, duplicated phosphosite amino acid windows were filtered for entries with the highest row-sum of intensities over all of the samples. The samples were ranked using the phosphosite intensities and missing values were imputed with a zero. To assign probable upstream kinases to differentially regulated phosphosites, the robust kinase activity inference (RoKAI) tool83 was used with the default settings and the UniProt Mus musculus reference proteome. RoKAI kinase and kinase target tables were shortlisted (cells, FDR < 0.05, number of substrates ≥ 3; tumours, number of substrates ≥ 2), assigned to significantly changed phosphosites (−1.5 ≥ FC ≥ 1.5, P < 0.05) and selected subsets of these phosphosites were visualized.
For the SB transposon insertional mutagenesis screen in ref. 10, mapping of SB insertions and calculation of insertion clonalities using next-generation sequencing of genomic DNA from SB-containing tumours was described in detail10. In brief, the relative clonality scores of SB insertions were calculated by normalizing each unique ligation score between genomic DNA and a SB cassette insertion to the highest ligation score within a given tumour sample. Then, each SB insertion was assigned a score between 0 (no insertion) and 1 (fully clonal insertion). Tumours with at least one relative insertion clonality score for Fgfr2 of ≥0.25 were defined as tumours containing SB insertion(s) in Fgfr2 (n = 65 tumours; total, n = 123 tumours).
Published RNA-seq data generated from tumours of the SB transposon insertional mutagenesis screen10 were used to derive Fgfr2 gene- and exon-level expression as well as splice junction information. Gene fusions affecting Fgfr2 in tumours with SB insertions were previously identified11. To quantify the expression of SB transposons in Fgfr2, customized fasta and gtf files were constructed for individual tumours by inserting the SB transposon sequence at the genomic position and according to its orientation as previously mapped10. Sequencing reads were then mapped on the basis of the customized fasta and gtf files using STAR (v.2.7.2)84. Splice junctions between Fgfr2-E17 and the SB transposon were quantified using SJ.out.tab obtained from STAR alignment. To determine the usage of Fgfr2-I17-inserted SB transposons as splice acceptors, the ratio of junction reads spanning from E17 to the SB transposon versus E18 was computed. Integrated Genomics Viewer (IGV, v.1.11.0)85 was used to generate sashimi plots.
WGS data on metastatic solid tumours were obtained from the HMF (data access request DR-138) through their Google cloud computing platform and analysed based on their bioinformatics pipeline (https://github.com/hartwigmedical/pipeline5) designed to detect all types of somatic alterations including structural variants and CNAs as previously described23. In brief, sequencing reads were mapped against the human reference genome GRCh37 using Burrows–Wheeler Alignment (BWA-MEM, v.0.7.5a)86. Somatic structural variants were called with GRIDSS (v.1.8.0)87 and CNAs and tumour purity were estimated using PURPLE (v.2.43)88. Finally, LINX (v.1.9)88 was performed to annotate events and to construct derivate chromosome structures. On the basis of the PURPLE output, samples containing structural variant BPs within the FGFR2 genomic region were considered for further structural variant analyses (n = 266 total BPs and 196 unique BPs in 86 tumour samples; Fig. 1f). To annotate structural variants, the location and orientation of both BP sides (FGFR2 and its partner) were used to determine RE types. Among the RE partners, the gene encoding the longer protein sequence was used as RE classification backbone. The following RE types were defined: (1) in-frame fusion, both BP sides were located in the intronic regions of coding genes and the upstream and downstream exons adjacent to the BP were both in-frame (complete reading frame) or both BP sides were located in the exonic regions of coding genes and the fused sequence was in-frame; (2) frame unknown RE, both BP sides were located in the intronic regions of coding genes and either the upstream or the downstream exon adjacent to the BP was out of frame (incomplete reading frame), or one or both BP sides were located in exonic regions of coding genes and the fused sequence was out of frame. Any of these cases made the reading frame unpredictable (unknown). (3) RE with intergenic space, one BP side located to FGFR2 and the other BP side located to a non-coding IGR; (4) out-of-strand RE, both BP sides were located in the coding regions of genes. The gene upstream to the BP (FGFR2) was supported by a sense-oriented read sequence, whereas the gene downstream to the BP was supported by an antisense-oriented read sequence; (5) internal RE, both BP sides were located within the genomic region of FGFR2; (6) unresolved REs, the gene upstream to the BP was supported by antisense-oriented read sequences or the REs contained single breakends. Unresolved REs were excluded, resulting in a refined list of samples containing FGFR2 REs (n = 93 REs in 55 tumour samples; Extended Data Fig. 1g,h). For the samples with multiple FGFR2 REs, the relative allele frequency of each RE was computed using the ploidy level inferred by LINX. An I17/E18 RE allele frequency of >15% was used as a threshold to define samples with FGFR2 REs causing E18 truncations (E18-truncating, n = 20; others, n = 35; Extended Data Fig. 1g,h and Supplementary Table 1). FGFR2 copy number (CN) gains of >5定义为扩增 。在I17处具有FGFR2 CN段BPS的样品中 ,具有E1 – E17 CN(CNE1 – E17)> 5和CNE1 – E17-CNE18> 2的样品被定义为FGFR2-E1 – E17部分放大。一些样品表达基于RNA-Seq的FGFR2框架内融合基因,但在WGS中显示不一致的RE类型。在这些情况下,使用LINX对WGS数据进行了深入的注释,以推断由复杂RE事件构成的衍生染色体的合理结构 。
从HMF获得了转移性实体瘤的原始RNA-seq数据(数据访问请求DR-138)。使用Star(v.2.7.2)84映射测序读数为人类参考基因组GRCH38(GENCODE V32 CTAT) ,其推荐参数随后运行Star Fusion(V.1.8.1)89。通过从Star和grch38 Gencode V32 CTAT获得的嵌合对齐信息(chimeric.out.unction)执行Star-Fusion。检查了恒星和恒星融合的基因融合的嵌合对齐,检查了支持WGS中鉴定的RES的RNA-Seq比对 。对于在WGS中鉴定出的框架内融合的样品,从恒星融合推断的融合基因的上游和下游外显子数与WGS中发现的融合匹配。对于在WGS中鉴定出的其他类型RES的样品 ,跨越上游外显子和下游外显子(未框外RES)的嵌合读数,从“ chinimeric.un.out.out.out.out.out.ost.jjunction ”中挖出了下游基因间序列(与基因间空间)或下游反义基因序列(跨趋上)。使用UCSC提升基因组注释(https://genome.ucsc.edu/cgi-bin/hgliftover)将基因组坐标从GRCH37转换为GRCH38 。IGV(v.1.11.0)85用于生成生鱼片图。
在10,344个TCGA样品90中,我们根据几个标准将可能表达FGFR2ΔE18的样品预先预设样品:(1)FGFR2扩增或(2)FGFR2-E18中FGFR2-e18中的fgfr2扩增或(2)fgfr2-e17(3)中FGFR2-i17(4)fgfr2-e17 ,(4)fgfr2-e17,(4)的突变。FGFR2-E18-C3或-E18-C4和/或(6)先前注释的FGFR2 Fusions91 。FGFR2扩增和突变信息是从CBIOPORTAL92获得的。CN段文件用于CN中断信息和外显子级表达数据,从NCI-GDC数据门户(https://portal.gdc.cancer.gov/)获得。在I17处具有FGFR2 CN BPS的样品中 ,具有CNE1 – E17段值的样品(log2 [CN/2])> 0.3(扩增的典型吉斯阈值)和CNE1 – E17 -CNE18> 0.3定义为FGFR2 E1 – E17 partible FampleFielfiend 。为了选择损失FGFR2-E18表达的样品,将E18表达归一化为E1 – E17的中位表达。与在TCGA正常组织样品中观察到的最小表达相比,显示出较低的FGFR2-E18表达的肿瘤样品。为了评估E18-C3和E18-C4的使用 ,我们从NCI-GDC数据门户中获得了剪接连接读数计数 。FGFR2-E17至E18-C3和E18-C4跨度读数计数除以FGFR2-E17的总连接读数,以计算E18-C3和E18-C4的使用。与在TCGA正常组织样品中观察到的最大使用相比,显示出更高的FGFR2-E18-C3或-E18-C4使用的肿瘤样品。总共,选择过程产生了165个样本 ,使用TCGABIOLINKS(v。2.14.1)93从NCI-GDC数据门户中下载了原始RNA-Seq数据 。使用Star(v.2.7.2)84映射测序读数为人类参考基因组GRCH38(GENCODE V32 CTAT),其推荐参数随后运行Star Fusion(V.1.8.1)89。用嵌合对齐信息(chimeric.out.unction)执行恒星融合,以获得高信心和框架内的高信心 (移交或与非编码RNA的融合)基因融合。恒星融合仅使用跨越读取的外显子 - 外观来检测基因融合 。因此 ,我们使用了从chimeric.out.out.unction文件读取外显子 - intron/Intron-Intron跨度读取,以查找应用多个过滤步骤的非框架外融合的非传统类型。如果我们发现(1)多个嵌合对齐,(2)PCR重复和/或(3)线粒体/免疫球蛋白/HLA映射 ,则将嵌合跨度读物读取。框外RES由外显子 - 外观跨越读取的读数定义,从而导致边框或与非编码RNA(星形融合)或外显子插入/内含子插入式读取(星形嵌合对齐) 。基因间RES是通过跨越FGFR2和IGR之间的读取来定义的。通过跨越FGFR2和反义伴侣基因之间的读取来定义脱离的RES。考虑了具有复发性BP支持的RES(跨度读数> 2) 。对于具有多个FGFR2 RES的样品,根据支持连接读数计数计算每个RE的相对表达。E17连接读频率> 15%用作用FGFR2ΔE18RES定义样品的阈值。IGV(v.1.11.0)85用于生成生鱼片图 。
从CCLE Data Portal30获得了广泛的研究所癌细胞系百科全书(CCLE)细胞系的突变 ,基因表达,外显子使用率和融合数据。FGFR2/3错义热点突变是与先前的注释92,94一致的,在FGFR2的情况下 ,基于FMI队列(扩展数据图2A)。影响以下氨基酸的错义突变被认为是热点:FGFR2,SER252,CYS382,ASN549 ,LYS659;FGFR3,Arg248,Ser249 ,Tyr373,Lys650。CN数据作为log2 [cn/2]值获得,log2 [cn/2]≥2被认为是扩增 。通过应用以下过滤器 ,进一步清洁了FGFR融合数据(ccle_fusions_unfilter_20181130.txt):(1)ffpm> 0.1> 0.1,(2)跨越片段计数≥5和(3)表达值rpkm≥1。fgfr2/3被认为是e18-trunc if e18-nunc if e18-incem if if if if fgfr2/consefip if fgfr2/consefip if fgfr2/conseft in cyseff fgfr 2/FGFR2-E18-C3使用(p< 0.01 derived from Z-score normalization of exon usage ratio) among the samples with robust expression of FGFR2. To compute composite expression of FGF receptors, FGFR1–4 expression was normalized by the geometric mean of each receptor among all of the samples and summed as previously described33. Drug-response data for AZD4547 and PD173074 were obtained from the Cancer Therapeutics Response Portal (CTRP) v2 deposited in the PharmacoDB database31,95 and from the Genomics of Drug Sensitivity in Cancer (GDSC) database32, respectively. Integrated area under the sigmoid-fit concentration-response curve values were used to evaluate the association between FGF/FGFR status and drug sensitivity.
Genomic DNA from cultured cells was isolated using the ISOLATE II Genomic DNA Kit (BIO-52066, Bioline) according to the manufacturer’s guidelines. Low-coverage WGS was performed as previously described57. Libraries were sequenced with 65 bp single reads using the HiSeq 2500 System with V4 chemistry (Illumina) operated by the HiSeq Control Software (v.2.2.68, Illumina). Sequencing reads were mapped to the human reference genome GRCh38 using BWA-MEM (v.0.7.5a)86. Reads with mapping quality lower than 37 were excluded. The resulting alignments were analysed with QDNAseq (v.1.14.0) using sequence mappability and GC content correction and a bin size of 20,000 bp to generate segmented CN values96.
RNA-seq analysis of cultured cells was performed as previously described68. In brief, cells were lysed in Buffer RLT (79216, Qiagen) containing 1% 2-mercaptoethanol. Total RNA extraction was performed using the RNeasy Mini Kit (74104, Qiagen) according to the manufacturer’s guidelines. The quality and quantity of RNA was assessed using the 2100 Bioanalyzer system and a Nano chip (Agilent). RNA samples with RIN >根据制造商的说明,使用Truseq RNA库准备KIT V2(RS-122-2001/2 ,Illumina)处理8处理Polya-Strand的库制备,并根据制造商的说明,使用7500 CHIP与2100 Bioanalyzer系统进行了质量检查 ,并将其汇总为10 nm序列的库存储备解决方案。使用带有V4化学的HISEQ 2500系统对100 bp配对的读取进行了测序,并由HISEQ Control软件操作 。使用Star(v.2.7.2)84映射测序读数为人类参考基因组GRCH38(GENCODE V32 CTAT),其推荐参数随后运行Star Fusion(V.1.8.1)89。基因和外显子级表达读数通过特征(v.1.6.2)97量化了基因结构在GRCH38中定义的基因结构。CPM值的基因至少在样品总数的至少10%中被视为表达并用于下游分析 。使用EDGER(v.3.26.6)98,99通过修剪的M-Value(TMM)方法的修剪平均值(TMM)方法的读数计数。为了检测RNA-Seq的FGFR2基因融合和RES,我们遵循了TCGA RNA-Seq分析所述的方法。
根据制造商的指南 ,使用RNeasy DSP FFPE试剂盒(73604,Qiagen)分离FFPE样品的总RNA 。使用敏捷的贴皮系统和高灵敏度D1000试剂(Agilent)评估RNA的质量和数量。总共使用20 ng碎片的总RNA进行光明兼容的cDNA文库制备。首先,总RNA用于逆转录和第一链cDNA合成 。在最终修复和适配器连接后 ,选择使用Truseq RNA Exome Kit(Illumina)中提供的生物素化靶特定探针富集cDNA序列以富集外显子序列。使用捕获/富含外部的cDNA生成标准的RNA-seq库。使用条形码引物对不同样品进行纯化的cDNA序列进行扩增。使用Qubit Flex荧光计(Thermo Fisher Scientific)对纯化的文库进行定量,并使用NextSeq 500或NextSeq 6000 Systems(Illumina)进行了2×150 bp的配置,分别由NextSeq(V.2.0.2)和Novaseq(V.1.7.5)控制软件进行了测序 。恒星融合(V.1.8.1)89和人参考基因组GRCH37用于使用默认参数进行RNA融合检测。使用默认参数使用Star(v.2.7.3a)84和RSEM(V.1.3.0)100进行基因和转录定量。叶刀(V.0.2.9)101和恒星产生的BAM文件用于检查剪接变体的内含子切除计数 。IGV(v.1.11.0)85用于生成生鱼片图。
PDX模型先前以Crown Bioscience102为特征 ,并在Huprime PDX Collection(https://www.crownbio.com/oncology/in-vivo-services/patient-derift-derived-derived-xenograft-pdx-tumor-models)中进行了描述。根据(1)FGF3/4/19扩增,(2)FGFR2/3错义热点突变,(3)FGFR1/2/3扩增 ,(4)FGFR1/2/2/3/4的高表达和/OR(5)FGFR融合基因的表达 。PDX模型KI0551,LI0612和LU1901作为对照包括,因为每个人都包含MET致癌扩增 ,潜在地使对FGFRI5555,103的耐肿瘤具有抗性。从CrownBio-Huprime数据门户中获得了选定PDX模型的全异位测序和原始RNA-seq数据产生的CN和突变数据。测序数据源自未处理的PDX 。测序读数映射到人类(GRCH38 GENCODE V32 CTAT)和小鼠(MM10 Gencode M23)参考基因组,以使用DISAIMAUTER(V.2018.05.03-6)滤除鼠标来源的读取。如所述分析了人类细胞系RNA-seq数据的分析,其余的人读数进行了分析,如CCLE RNA-SEQ分析所述计算了复合FGFR1-4表达 ,并在TCGA RNA-SEQ分析中所述检测到FGFR2基因融合。我们还实施了先前由Crown Biosciences注释的融合/RES,并将其存放在Crownbio-Huprime中 。
PDX fragments of 2–3 mm in diameter were injected subcutaneously into the right flank of 8-week-old female BALB/cAnNRj-Foxn1nu/nu mice (HFK Bioscience and Shanghai Laboratory Animal Center), except for BL5001 and BL5002, for which 8-week-old female NOD.CB17-Prkdcscid/NCrHsd mice (Envigo) were used.每周两次称重并监测小鼠的肿瘤发育,并且一旦肿瘤达到200–250 mm3的体积(使用卡钳以二维测量;体积=长度×长度×width2×0.5) ,将将小鼠随机分配到车辆与DeBio-1347 FGFRI治疗臂。每天通过口腔烤每天进行12-25天进行治疗,使用车辆(1%的Kollidon VA64在脱水水中),每公斤40毫克Debio-1347(Debiopharm)(Debiopharm)(Debiopharm)(debiopharm) ,治疗过程中每千克增加到每公斤60毫克,治疗期间(BL5001,BL5002) ,60 mg debio debio debio debio debio-1347(BR0597)(bn22289)(bn22289),BL0289,梅BN2289 ,,bl0289 ,,BR1115, CR3151, ES0136, ES0189, ES0204, ES0215, ES0218, ES2116, GA0114, LI0612, LI1035, LI1055, LU0755, PA1332) or 80 mg per kg debio-1347 (CR1428, ES0042, GA0080, GA0087,GA1224,GA3055 ,GL0720,HN0366,HN0696 ,HN1420,KI0551,LU1302 ,LU1380,LU1429,LU1901 ,LU2504,LU2504,PA3013)。通过相对治疗与控制比(ΔT/ΔC)确定治疗反应。ΔT和ΔC分别是治疗组和对照组的初始治疗日之间的平均体积差异 。所有动物程序均在Crown Bioscience SPF设施上进行。根据在实验动物护理评估和认证协会的指导下 ,根据机构动物护理和使用委员会(IACUC)批准了与动物处理,护理和治疗有关的所有与动物处理,护理和治疗有关的程序。
在FFPE肿瘤组织或常规临床护理期间预期收集的血液样本上进行了全面的基因组分析(CGP) 。在临床实验室改进修正案,美国病理学家认证的 ,纽约州监管的参考实验室(基金会医学)中进行了测试。从西方机构审查委员会获得了这项研究的批准,包括豁免知情同意书和授权的健康保险可移植性和责任法案(协议20152817)。对于217,017种肿瘤组织标本,从FFPE样品中提取DNA(> 50 ng) ,下一代测序是由FoundationOne伴侣诊断测试进行的,使用基于适配的基于辅助的,基于辅助的均匀覆盖范围的杂交图书馆 ,以对所有均匀覆盖(> 500×)的315或315或315癌症的杂种库进行测试,并将其进行了315或315或315癌症的均匀效果 。如前所述,经常在癌症中重新排列。105。总共分析了总共26,289个样品;对DNA进行了406个基因和参与RES的31个基因的选定内含子的测序 ,并将RNA测序为265个基因106 。对于6,264个液体样品,从20 mL的周围全血中分离血浆,并提取≥20ng的循环肿瘤DNA ,以创建用于编码70个基因外显子的适应测序文库,以在混合接收和样品 - 培训测序107之前进行70个基因的编码。分析了基本取代,短插入和缺失,CN的收益或损失以及RES的结果。伴随诊断测试包括针对所有FGFR2外显子和FGFR2-I17的探针 。
如果基因组BP在I17/E18热点中 ,则FMI将FGFR2 res分类为融合,如果预测的嵌合蛋白包括N末端和C末端(In strand),并且如果基因伴侣是先前描述的融合伙伴(或者不知名的伙伴)(或者不知名)或新颖的基因伙伴或新颖的Gene伙伴或与FG的fg fregs一起预测的FG。I17/E18热点脱离式RES ,任何带有基因间空间BP的RES以及FGFR2 E1-E17中具有BP的任何RES分类为RES。在这里,我们按照WGS数据分析进行了重新分类FGFR2 RES。简而言之,如果基因组BP在I17/E18中 ,并且Fusion伴侣的框架是可预测的且侧面的,则将RES定义为框架融合 。在基因间空间中,框架不可收拾的RES ,股外RES和带有BP的RES分类为非典型RES。如果≥80%的FGFR2靶标在放大的CN(定义为样品的中位数≥4+),则称为FGFR2扩增。E18目标的差异CN收益< E1–E17 targets were defined as FGFR2-E1–E17 partial amplifications. In samples with FGFR2 REs and co-amplification, low-level REs were discarded at a read threshold dependent on the amplification CN. FGFR2-E18-truncating nonsense and frameshift mutations were subgrouped into mutations affecting the proximal (E768–Y783) versus the distal (P784–T821) C terminus (encoded by E18) on the basis of the functional classifications of truncating mutations in this study (Fig. 2e and Extended Data Figs. 6a,h, 7a,b and 8a–c). I17/E18 in-frame fusions or non-canonical REs, E1–E17 partial amplifications, E18 splice-site mutations and/or proximal E18-truncating mutations were grouped as FGFR2-E18-truncating alterations. The four most common FGFR2 missense mutations affecting Ser252, Cys382, Asn549 and Lys659 are referred to as hotspots throughout this study (Extended Data Fig. 2a), in agreement with previous annotations92,94. To establish the co-driver landscape of FGFR2-altered tumours, the top 30 driver genes concurrently altered (amplifications, deletions, and missense, truncating and splice-site mutations) in samples with FGFR2 alterations (E18 truncations, E1–E18 full-length amplifications and/or missense hotspot mutations) were identified. The samples were grouped according to FGFR2-E18-truncating alterations, FGFR2-E1–E18 full-length amplifications or FGFR2 missense hotspot mutations, and proportion Z-tests were used to identify co-driver genes significantly enriched in either of the 3 FGFR2 alteration categories, both in the pan-cancer cohort as well as in the BRCA, CHOL, OV, COAD/READ, ESCA/STAD and LUAD/LUSC cohorts specifically. Fisher’s exact tests were used to evaluate co-occurrence (odds ratio >1)或pan-cancerer队列中的3个FGFR2变化类别中的co驱动器基因的相互驱动器基因的相互排他性(优势比<1)和特定于BRCA队列中的FGFR2 WT样品 。
拖鞋算法预测蛋白质的相互作用能力108。它已通过七个不同的蛋白质组数据库(DIP,完整 ,薄荷,Biogrid,PDB,MatrixDB和12D)进行了训练 ,以建立潜在的自我相互作用蛋白质108的拖鞋金标准数据集。根据该数据集,计算了FMI数据集中确定的FGFR2 RE伴侣基因编码的独特蛋白质中的自相互作用的比例 。还使用拖鞋算法108本身评估了FGFR2 RE合作伙伴的自相互作用能力。为了确定FGFR2 RE合作伙伴中的特定自我相互作用域,从3DID109和PPIDM110数据库中获得了域 - 域交互信息 ,并使用David Bioformitic Resources111进行了域富集分析。瑞士 - 普罗特同性恋Sapiens蛋白质组(发行2021_04)用作这些分析的参考数据集 。
有关研究设计,资格标准以及Fight-202(NCT02924376)的研究设计,资格标准以及功效和安全性发现的详细信息 ,II期,开放标签,多中心 ,Pemigatinib对先前治疗的先进或转移性胆管癌患者的全球研究,全球性研究,并以前不带FGF/FGFFFFFR GRETAPTICS。在进入试验资格筛查之前 ,使用FoundationOne进行了FGF/FGFR状态预先筛选,或者根据局部测试提供了商业基础报告或FGF/FGFR状态报告,后者需要通过FoundationAne进行回顾性中心确认。在202 Fight-202中,FGFR2 RES根据基础报告和生物标志物的定义进行了分类(融合与RES) 。在对Fight-202致癌基因组数据的重新分析中 ,我们使用FMI提供的更改数据将FGFR2扩增状态和FGFR2 RES分类仅按框架进行分类。五名被归类为在其基础报告中融合的患者与更改数据中的融合结合进行了FGFR2扩增。在其基础报告中,有四名被归类为融合的患者在结构化数据中有未知的框架。在更改数据中,两名被归类为RES的患者被归类为框架 。这些差异归因于FMI从原始报告的时间到生成更改数据的时间 ,FMI使用的分析和注释管道的持续更新造成的。重要的是,这些变化不会影响Fight-202的主要功效队列的结果,而是为此子集分析提供了替代性分类。
使用PRISM分析体外和体内实验的数据(V.9.3.1 ,GraphPad软件) 。使用R(V.3.6.3–4.1.2)分析基因组和蛋白质组学数据。在体外实验至少重复了两次,并且所有复制尝试都是成功的。在这些过程中,收集了n≥3个独立复制品的数据 。未进行样本量计算。小鼠队列的样本量和进行过体内分析(FACS分析 ,H&E和IHC分析,蛋白质组学,RNA-SEQ和RT-QPCR)是基于先前的计算或使用G*Power Software(v.3.1)56确定的 ,并且足够大以测量效应的效果。在分析的小鼠或批次之间可重现数据,并且所有复制的尝试都是成功的 。战斗202试验中的样本量基于先前的计算9,并且足够大以测量效应量。所使用的统计检验和多次测试校正模型在相应的图形传说中描述。P <0.05被认为具有统计学意义 。除了p <0.0001和p≥0.05,在相应的图面板中始终显示精确的p值 ,或者在补充表2中指示。
有关研究设计的更多信息可在与本文有关的自然研究报告摘要中获得。
赞 (3)
评论列表(4条)
我是东辰文化的签约作者“admin”!
希望本篇文章《截短的FGFR2是多种癌症中临床上可起作用的癌基因》能对你有所帮助!
本站[东辰文化]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览: FVB/NRJ WAP-CRE; CDH1F/F,TRP53F/F,TRP53F/F; ROSA26-CAS9和ROSA26-MT/MG小鼠菌株在NKI动物设施中维持,并在...