本文来自作者[admin]投稿,不代表东辰文化立场,如若转载,请注明出处:http://www.mzwhys.cn/cshi/202506-3249.html
当我们汇总和大小重量时,我们每天都有数据的21个热线线的数据(扩展数据表1a ,b)时,我们观察到大流行爆发后六周到达大流行后的峰值呼叫量超过35%(95%置信区间(CI):22.6,48.3; p; p; p; p; p; < 0.001) (Fig. 1a). With the country-specific outbreak defined as the date when more than 1 SARS-CoV-2 infection per 100,000 inhabitants was recorded39, we see a significant increase of 13.5% (95% CI: 1.6, 25.5; P = 0.027) for the first time in week 3. After the peak in week 6, volumes gradually decreased again, to 6.2% (95% CI: −0.2, 12.6; P = 0.058) above pre-pandemic levels39 by around week 11. When we instead define the starting point of the pandemic as the entry into force of the first shelter-in-place (SIP) order40, we observe an increase of 11.2% (95% CI: 3.1, 19.4; P = 0.007) (Fig. 1b) by week 2, steadily elevated call volumes from week 3 (+27%; 95% CI: 19.1, 35.0; P < 0.001) until about week 8 (+22.6%; 95% CI: 15.2, 30.1; P < 0.001), and a decrease thereafter40. The different time profiles are mainly explained by the fact that on average, SIP orders were issued 2 to 3 weeks after local outbreaks (Extended Data Fig. 1, Extended Data Table 1).
The gradual nature of the increase in call volumes could, to some extent, be a result of capacity constraints4. Several helplines initially had to leave some of the additional calls unanswered and only gradually managed to adjust capacity to the new level of demand. Because of this issue, the evolution of recorded aggregate call numbers should be interpreted as a lower-bound estimate of the true increase in the number of people who sought to call a helpline in the first wave of the pandemic. However, unanswered calls are not pre-screened, and call answering is thus a random process unrelated to the motives of the caller. Thus our data provide representative information on the reasons for calling even if some calls were left unanswered because of capacity constraints.
We analysed the reasons for calling using data on the 12 helplines for which we have call-level information on conversation topics and caller characteristics. Our main results relating to call topics are presented in Fig. 2. Most pre-COVID-19 calls were made because of relationship issues (37%), loneliness (20%) or various fears and anxieties (13%) (Fig. 2a). Women placed 61% of total calls, and 63% of calls were placed by people between 30 and 60 years of age. The breakdown by topic was fairly similar across helplines, with relationship issues being the most prevalent topic in 8 of the 10 helplines for which this category is defined (34% overall) (Extended Data Fig. 2). More than 90% of ‘calls’ were voice calls, but for some helplines our data also includes text-based (online chat) conversations. Between 49% and 81% of calls were placed by first-time or sporadic callers, both before and after the onset of the pandemic (Extended Data Table 2).
During the first wave of the pandemic, defined here as lasting until the end of June 2020, the composition of calls changed significantly. The biggest increase in calls was recorded in the category ‘fear’, with 2.4 percentage points (95% CI: 1.8, 2.9; P < 0.001) (Fig. 2b). This category includes calls made out of fear of infection with SARS-CoV-2.The other category of calls whose share increased during the first wave of the pandemic was ‘loneliness’ with 1.5 percentage points (95% CI: 1.1, 1.8; P < 0.001) (Fig. 2b). The share of all other conversation topics decreased during the first wave. Statistically significant relative decreases were observed for the topics ‘relationships’ (−2.5 percentage points; 95% CI: −3.2, −1.8; P < 0.001), ‘livelihood’ (that is, economic worries, −0.6 percentage points; 95% CI: −0.9, −0.3; P < 0.00), ‘violence’ (−0.3 percentage points; 95% CI: −0.5, −0.2; P < 0.001) and ‘addiction’ (−0.3 percentage points; 95% CI: −0.4, −0.1; P = 0.002) (Fig. 2b). We detected no statistically significant change in the share of calls related to suicidal ideation (−0.1 percentage points; 95% CI: −0.3, −0.1; P = 0.476 (two-sided t-test of difference) and P < 0.006 (two one-sided t-tests), against effect size <−0.35 and >分别为0.35)(扩展数据图3)。这些结果表明 ,大流行的第一波及相关措施导致有关家庭暴力,成瘾和自杀式观念的呼吁相对于呼叫的总体总体增加而造成的呼吁的比例不足 。
当我们分解性别和年龄段的主题份额变化时,我们观察到,与恐惧相关的呼叫的增加完全由男性和女性超过30多岁(2.1和3.1个百分点介于2.1和3.1个百分点之间; 95%CI:1.5 、2.7至2.2 ,2.2,4.0; p <0.001; p <0.001; p <0.001)(扩展数据图4)。这与COVID-19的脆弱性随着年龄的增长而单调增加,这是一致的。30岁以下男性的自杀相关呼叫的份额特别强烈(1.6个百分点; 95%CI:-2.3 ,-0.9; P <0.001)(扩展数据图4) 。相反,30岁以下的女性类别脱颖而出,与暴力有关的电话的份额增加了0.9个百分点(95%CI:0.2 ,1.6; P = 0.010)(图4扩展数据),尽管事实上,在住院命令下 ,在家庭暴力中遇到无私的呼吁可能会更加困难。
对于我们对图2的分析的呼叫中,大约有三分之一的电话记录了一个以上的对话主题(扩展数据图5A)。特别是,与“暴力”和“生计 ”有关的呼叫也涉及“关系”(分别为39%和35%)(扩展数据图5B) ,但是在数据中观察到了我们分析中所有八个主题的组合。从分析结果下删除多主呼叫几乎没有变化(扩展数据图5C) 。
总体而言,我们的结果表明,在Covid-19-19大流行中观察到的热线呼叫的增加是由于对病毒本身的担忧以及在SIP命令中的孤独而在很大程度上驱动的,而不是由家庭暴力 ,成瘾或自杀式供给。
对于样本中的两个最大的求助热线,Telefonseelsorge(德国)和SosAmitié(法国),我们收到了直到2021年3月31日的数据 ,使我们能够分析超出大流行第一波的热线呼叫。图3显示,在2020年下半年,呼叫量再次增加 ,与感染的增加和非药物干预措施(NPI)的收紧 。在德国,呼叫的数量不断增加到2021年初(图3A),在法国 ,它在2020年12月的高峰之后再次下降(图3B)。这些不同的模式与两国的感染和政府措施严格的努力与更强烈的升高和下降趋势有关。
对话主题模式在两个热线线之间以及大流行的两个不同时期之间相互类似 。在德国,由于孤独感引起的呼叫增加了1.4个百分点(95%CI:0.9,2.0; p <0.016)在后续波中(95%CI:0.1 ,1.1; p <0.016)在后续波中增加了0.6个百分点(95%CI:0.1,1.1; p <0.016)(图3B)。在法国,这些增加是2.0个百分点(95%CI:1.4,2.6; p <0.016)和0.8个百分点(95%CI:0.4,1.2; p <0.001)(图3B)。在第一波中 ,与“恐惧”(包括对感染的恐惧)有关的呼叫份额增加了2.2个百分位数(95%CI:1.4、2.9; p <0.001)在德国和2.7个百分点(95%CI:2.0,3.5; p <0.001; p <0.001; p <0.001; p <0.001)在法国(图3B) 。对于法国,我们还观察到在随后的波动中的显着增加 ,提高了1.2个百分点(95%CI:0.8,1.5; p <0.001)(图3B)。在第一波中,在德国关于关系问题的呼叫份额下降了3.5个百分点(95%CI:-4.4 ,-2.5; p <0.001),在随后的波中(图3B)(图3B),在第一波中的呼叫点(95%CI:-2.3 ,-1.2; p <0.001)下降。法国也观察到减少:-2.6个百分点(95%CI:-3.9,-1.2; p <0.001)在第一波中,-1.1个百分点(95%CI:-2.0 ,-2.0,-0.3; p <0.001)在随后的波浪中(图3B)(图3B) 。随后波浪期间的对话与自杀性相关(德国为-0.6个百分点,法国为-0.9个百分点; 95%CI:-0.9,-0.3和-1.3和-1.0 ,-0.7; p <0.001)(图3B)。
相反,法国第二和第三波中的较大呼叫涉及身体健康(+0.8个百分点; 95%CI:0.3,1.2; p = 0.001)(图3B)。这可能与由于受到限制或推迟获得治疗设施的机会以及更少的体育活动机会而感染了SARS-COV-2的人群中较大的人群或健康担忧。与第一波相似 ,其他呼叫主要集中在与大流行有关的问题上:对感染,孤独感和随后的波浪的恐惧 - 身体健康 。
热线呼叫数据使我们能够使用面板数据回归来隔离政策措施与心理健康指标之间的部分相关性。该分析的一个特别有用的经验实验室是呼吁美国在美国进行国家自杀式生命线(以下称为生命线)。我们拥有2019年,2020年和2021年初的数据 ,这使我们能够利用美国在美国观察到的流行病学情况和政策措施的大量内部(状态)变化 。得益于整个危机中心网络的协调,通过一组通用的一般准则构成了生命线,在此数据集中 ,机构和测量问题使各种求助热线线和国家之间的比较变得复杂,这些问题在此数据集中不太关心。然而,作为专注于自杀的热线求爱 ,生命线并不能使我们能够跟踪心理健康问题组成的变化。
我们的主要发现如图4所示 。总时间趋势表明,在第一个波浪中,对生命线的呼叫不高于2019年相应期间(大约32,000个每周电话)(图4A)(图4A)(图4A),但在随后的波浪中 ,它们增加了流行前的水平以上(2020年代后期和2020年春季2021年的每周35,000多个电话))。图4b说明了我们试图在三个解释性变量中“解释 ”的呼叫的时间概况的异质性:SARS-COV-2感染率39(图4C)(图4C),由组成部分的“遏制和闭合政策”的范围赔偿的范围(以及图)的总成本(以及图(图4D),以及图(图4D) ,图。付款)由牛津Covid-19政府回应Tracker的组成部分“收入支持”(图4E)衡量 。
在图4F中,我们根据2021年3月的数据总结了我们的回归结果。对于给定的政策量度,SARS-COV-2感染的增加与统计学上的自杀hulpline呼叫数量的减少有关(弹性= -0.012 ,95%CI:−0.0.0.023,023,023 ,023,023,-0.0.0.0.0.0.0.0.0.0.0.0 f.0.026; p =。估计的系数意味着SARS-COV-2感染增加了10% ,与自杀求助热线索林的呼叫降低0.1%有关 。
对这一结果的一种解释是,大流行本身会减轻自杀焦虑,也许是通过将人们的注意力转移到他人的痛苦上,或者是因为他们对自己对大流行的恐惧。这种解释与对美国灾难遇险热线的呼吁的演变一致 ,该呼吁在大流行期间的初始阶段向受到Covid-19的人们提供危机咨询的宣传急剧增加(从500个每周500次到3,000个呼吁,大约3,000次到3,000个电话)(扩展的数据)(扩展的数据),暗示了对焦点的一些偏离的焦点 ,以换取焦点的一些流离失所。
未发现更严格的状态NPI或更慷慨的州级收入支持措施的政策干预对生命线呼叫具有统计学意义(NPI严格的效果:0.020; 95%CI:-0.007,0.047; p = 0.155)具有统计学上的显着影响(图4F)(图4F)。尽管数据没有拒绝无效假设的统计能力,但我们的估计与更严格的NPI相一致 ,其次是生命线呼叫的增加以及收入支持政策的效果相反 。
Figure 4g shows the estimated effects of the three explanatory variables separately for the first and subsequent waves of the pandemic, with the cut-off date placed at 1 September 2020. We find that the dampening effect on Lifeline calls of the pandemic itself (measured as the number of SARS-CoV-2 infections) increased over time (−0.022 during the second sub-period; 95% CI: −0.038,-0.006; p = 0.006)(图4G)。但是,在大流行的波浪中,对更严格的NPI或更慷慨的收入支持的生命线呼叫的影响并没有明显差异。总之 ,这些估计证实了大流行的心理健康意义在第一和随后的波浪中仍然相对稳定 。在补充表7、8中,我们表明这些定性结果在一系列面板回归规范中都具有鲁棒性。
基于德国和法国洞穴的相应回归分析,在美国自杀热线器数据中观察到的模式得到了证实:所有其他事物相等 ,增加了SARS-COV-2感染和更慷慨的收入支持政策,随后在与自杀率相关的无帮助呼声中,具有-0.0.024.024(95.05%CI:−0.05555555),0.0555555.0555555.0355。p <0.001)和-0.020(95%CI:-0.033 ,-0.006; p = 0.004)(图5) 。相反,更严格的NPI之后是更多与自杀相关的呼叫(+0.035,95%CI:0.011 ,0.060; p = 0.005)(图5)。这些估计的效果具有统计学意义,并且在质量上与基于生命线数据的效果一致。
Our findings suggest that public compensation payments for pandemic-induced losses not only reduce economic hardship but also have broader benefits: more generous income support leads to fewer calls due to fear (−0.042; 95% CI: −0.061, −0.024; P < 0.001), loneliness (−0.024; 95% CI: −0.040, −0.008;p = 0.003),身体健康问题(-0.026; 95%CI:-0.041 ,-0.011; p = 0.001),并且正如预期的那样,经济焦虑('liveliohens'; -0.016; -0.016; 95%CI:-030.030 ,-030,-030,-0.002; p = 0.023)(图5) 。
赞 (1)
评论列表(4条)
我是东辰文化的签约作者“admin”!
希望本篇文章《求助热线电话揭示了Covid-19期间的心理健康问题》能对你有所帮助!
本站[东辰文化]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览: 当我们汇总和大小重量时,我们每天都有数据的21个热线线的数据(扩展数据表1a,b)时,我们观察到大流行爆发后六周到达大流行后的峰值呼叫量超过35%(95%置信区间(CI):...